Studying for the AOSA/SCST Germination and Purity exams

Presented by: Leanne Duncan January 7, 2020

A Teaching and Training Webinar

Disclaimer

The views, material, video or content of this webinar is that of the presenter and not necessarily those of AOSA or SCST.

When do you qualify to take the exams?

AOSA

- Employed in seed testing with two years full time experience = 4000 hours
- 100 minimum points to qualify
 - Work experience (1 point/80 hours)
 - 4000 hours = 2 years = 50 points
 - Workshops/Webinars (20 points max)
 - Annual Conference attendance (5 points max)
 - Accredited courses (50 points max, 2 points per quarter, 3 points per semester hour)
- 1 reference

When do you qualify to take the exams? SCST

- Employed in seed testing with two years full time experience = 4000 hours
 - SCST members must be an Associate member for 2 years
- 100 minimum points to qualify
 - Work experience (1 point/80 hours)
 - 4000 hours = 2 years = 50 points
 - Workshops/Webinars (20 points max)
 - Annual Conference attendance (5 points max)
 - Accredited courses (50 points max, 2 points per quarter, 3 points per semester hour)
- SCST 3 references

How to apply for the exam

- Application available on committee page on Analyzeseeds.com
 - https://www.analyzeseeds.com/consolidatedexamcommittee
 - Same application for both organizations
 - Submit application at least 60 days prior to exam
 - Applications are considered in the order they are received; space may be limited
 - Check website for current posted exam dates
- All materials must be submitted to support point tabulation
 - References of work experience
 - Workshop certificates/Webinar completion
 - College Transcripts
 - Incomplete applications that are missing information or supplemental materials may not be considered
- Fill out the application completely and clearly including point total. If unsure about a section - ask!
- Submit application digitally to email addresses provided on application

Applicant Name:

AOSA/SCST

APPLICATION FOR PURITY AND GERMINATION EXAMINATIONS

Please type or use black ink.

NEW: It is the applicant's responsibility to calculate and track points at the end of each application section.

A non-refundable fee of \$500.00 for both Exams, \$300 each for Purity & Germination, to help with the cost of administering the examination shall be invoiced by the Executive Director upon approval of your application. All requirements must be completed two weeks prior to the examination date with the exception of a workshop attended at the exam site immediately prior to the exam.

EXAMINATION REQUIREMENTS – Examination requirements are posted on the AOSA & SCST websites along exam with Study Guides for examination preparation. APPLICATIONS THAT ARE UNCLEAR OR CONTAIN INCOMPLETE INFORMATION WILL BE REJECTED. The Applicant must attach a separate sheet if more space is needed for college records (transcripts), laboratory equipment, references, or additional data helpful to the Board of Examiners.

Employer Name:					FAX #:					
Address:					Email:					
City/State/Zip code:					Sect	ion	Maximum Point	s Allowed	Applicant Calculated Points	7
Organization:	AOSA SCST Please pr		rovide (A		n/a		7.ppou.ii. ou.ou.u.ou i oo		
Education	School Name, City, State		Dipl	В		n/a			1	
High School					C D		20			1
College								$\frac{1}{2}$		
Business or Vocational					E		5			+
Graduate							50			<u></u>

Phone #:

When should you start studying for the exams?

NOW

When should you start studying for the exams?

Written Exams AOSA Rules for Testing Seeds

<u>Germination</u>

Pure Seed Units (PSU)
Germination procedures
Ryegrass Fluorescence testing
Tetrazolium Testing
Calculating final results
Reporting results
Tolerances
Volume 4 Seedling Evaluation

Purity

Sampling procedures
Sample preparation
Purity examination procedures
Pure Seed Units (PSU)
Fluorescence testing
Noxious weed examination procedures
Uniform Blowing Procedures
Uniform Classification of Crop & Weed Seeds
Calculating Multiple Seed Units (MSU)
Seed count procedures
Calculating final results
Reporting results
Tolerances

Germination:

AOSA Seed Vigor Handbook

AOSA Tetrazolium Testing Handbook

AOSA Cultivar Purity Handbook

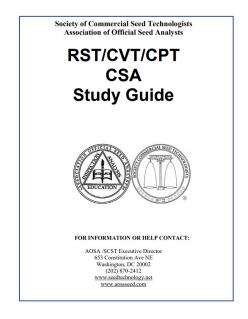
AOSA Moisture Testing Handbook

Purity:

AOSA Cultivar Purity Handbook

Federal Seed Act Regulations

https://www.ams.usda.gov/rules-regulations/fsa


https://www.ams.usda.gov/sites/default/files/media/StateNoxiousWeedsSeedList.pdf (All States Noxious Weed Seed List)

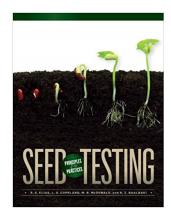
Canadian Methods & Procedures

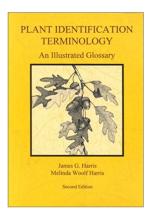
Contact CFIA for the latest edition cfia.ssts-ssts.acia@canada.ca

ISTA Rules for Testing Seeds

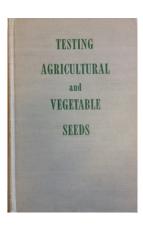
https://www.seedtest.org/en/international-rules- content---1--1083.html

https://www.analyzeseeds.com/wp-content/uploads/2017/02/RST-CVT-CPT-CSA-Study-Guide-2015-Revised-4-18-16-1.pdf

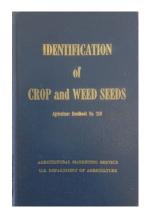

Seed Technologist Training Manual


Principles of Seed Science and Technology, Copeland & McDonald

Seed Testing: Principles and Practices, Elias, Copeland, McDonald, & Baalbaki



A good botany book for flower and seed structures



USDA Handbook 30:

Manual for Testing Agricultural and Vegetable Seeds

USDA Handbook 219: Identification of Crop and Weed Seeds

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

Fill in the blank:

The substratum must be moist	enough and provide	adequate seed-to-n	nedia contact to	supply the
needed moisture to the seeds	·			

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

Multiple choice:

The substratum must be moist enough and provide adequate seed-to-media contact to:

- a. supply the needed moisture to the seeds at all times
- b. ensure seeds have more than adequate moisture for seed imbibition
- c. prevent excessive oxygen absorption, oxidation, by the seeds

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

True or false:

The substratum must be moist enough and provide adequate seed-to-media contact to prevent excessive oxygen absorption by the seeds.

- a. True
- b. False

The substratum must be moist enough and provide adequate seed-to-media contact to provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times.

- a. True
- b. False

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

True or false:

The substratum must be moist enough and provide adequate seed-to-media contact to prevent excessive oxygen absorption by the seeds.

a. True

b. False

If a true or false question is – False; you must give an explanation of why it is False:

The moisture level, and seed-to-media contact is to ensure the seed has the needed moisture at all times.

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

Short answer:

How much water should be added to the substratum when planting seed?

6.3 Moisture and aeration. — The substratum must be moist enough and provide adequate seed-to-media contact to supply the needed moisture to the seeds at all times. When appropriate, gently pressing seeds into the germination media helps ensure adequate seed-to-media contact to allow for adequate and timely imbibition. Avoid supplying excessive moisture that will restrict aeration of the seeds. Except as provided for those kinds of seeds requiring high moisture levels in the germination media, the substrata should never be so wet that a film of water is formed around the seeds. For most kinds of seeds, blotters or other paper substrata should not be so wet that by pressing, a film of water forms around the finger. See section 6.9b.

Short answer:

How much water should be added to the substratum when planting seed?

There should be adequate water to provide seed to media contact to ensure the seeds have all the water they need throughout the germination test, but not so much that a wet film forms around the seed.

Society of Commercial Seed Technologists Association of Official Seed Analysts

RST/CVT/CPT CSA Study Guide

FOR INFORMATION OR HELP CONTACT:

AOSA /SCST Executive Director 653 Constitution Ave NE Washington, DC 20002 (202) 870-2412 www.seedtechnology.net

Timing and knowledge

There is no spare time to "figure things out" during the written exams.

If you are unsure of a question, move on to the next and come back to it if you have time.

Grading the Written Exams is done by four volunteers from the consolidated exam committee.

Exams are coded and grading is anonymous.

One person coordinates the graders results and any question(s) showing a significant difference in scores between graders will be reviewed until a consensus is met.

The scores of the four graders are averaged for a final score.

Depending on the number of exams to score, the work load of the volunteers, and coordination efforts, please allow 6 weeks for grading.

Germination Written exam will include questions on Pure Seed

Units

¿why?

			Histo	orical	lly			
AOSA					SCST			
two exams					one exam			
take Germination written and practical	CSA-G	take Purity written and Practical	CSA-P		take Germination and purity written and Germination practical	CVT	take Purity written and practical	СРТ
take Purity written and Practical	CSA-P	take Germination written and practical	CSA-G					
Once you have both CSA-G and CSA-P	CSA	Once you have both CSA-P and CSA-G	CSA	t	take Purity practical	RST	take Germination written and practical	RST

The Purity Written was required for the CVT to demonstrate that a candidate had a good working knowledge of what a PSU was and that the candidate was competent in planting seed.

Pure Seed Unit Evaluation Scoring

1 point for correctly evaluating the "unit" as Pure Seed or as Inert Matter

Pure Seed Unit Evaluation

Pure Seed/Inert Matter	Points
Pure Seed	1
Pure Seed	1

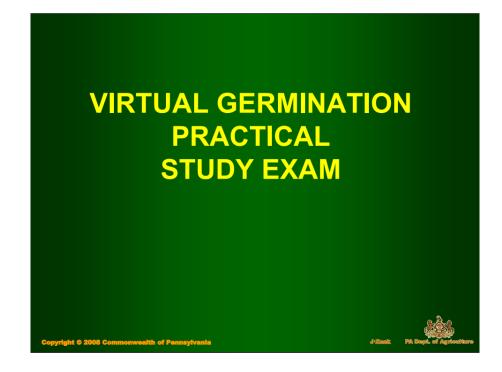
Purity Written

MSU Calculation

0.74

0.85

The factors represent the portion of the multiple unit weights considered pure seed.


Includes both Agropyron cristatum and A. desertorum.

c Dashes in table indicate that no factors are available at the levels shown. For evaluation refer to AOSA News Letter 60(1):10 (February 1986).

Seedling Evaluation

TZ Evaluation

Seedling Evaluation

Seedling Evaluation

- 2a. Slight "knee" visible.
- 2b. No "knee" visible.

3a. Slightly stubby root.

3b. Stubby root, with adventitious roots started.

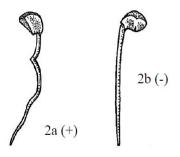


Fig. 2 Cotyledon "knee".

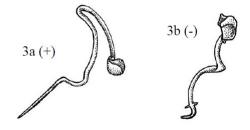
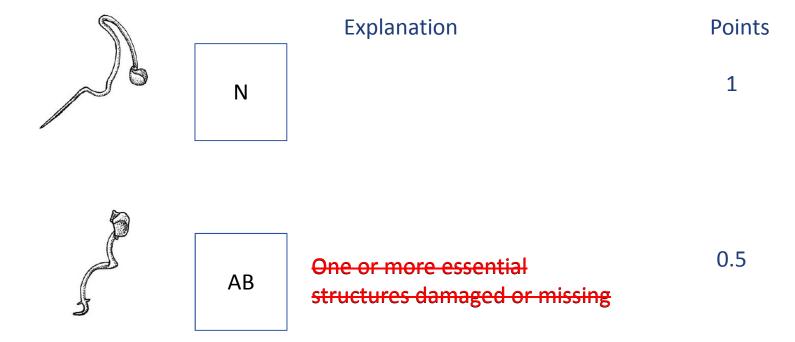
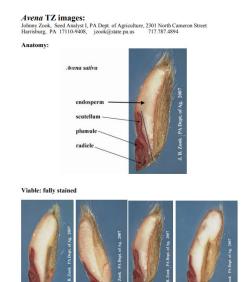


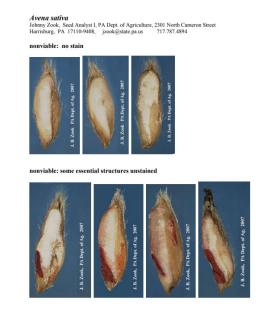
Fig. 3 Root defects.

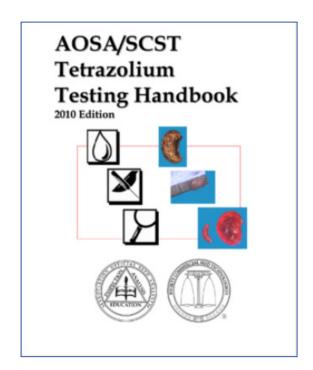

Seedling Evaluation Scoring

1 point for correctly evaluating a normal seedling

0.5 point for correctly evaluating an abnormal seedling plus


0.5 point for correctly explaining the abnormal condition


Seedling Evaluation


TZ Evaluation

https://www.analyzeseeds.com/aosascst-tetrazolium-committee/

TZ Evaluation

TZ Evaluation Scoring

0.5 point for correctly evaluating the seed as Viable or Non-viable0.5 point for correctly describing the Viable or Non-viable

Germination Practical

TZ Evaluation

Explanation

Radical stained; more than 50% of cotyledons stained, and the unstained areas away from attachment point

Points

1

Less than 50% of cotyledons stained

1

Germination Practical

A good metric to measure your readiness to take the Germination Practical exam is; Can you score 80% or higher by quizzing yourself on images from Seedling Evaluation Handbook, online TZ photos, and online Seedling Evaluation Study exam?

Mixing and Dividing
Uniform Blowing Procedure
PSU and MSU classification
Seed ID
Separations
Purity Sample

Mixing and Dividing Checklist	
Correct AOSA weight for seed kind	
Bubble check	
Clean equipment with air hose (or equivalent) before use	Mixing and Dividing
Sample passed through divider 3 times before division reduction	
Pour centrally and together (for motorized dividers, the power should be off when pouring)	
Keep containers under shoots when pouring or mixing/dividing	
Divide down to approximate, but not less than, Noxious portion	
Divide down to approximate, but not less than, Purity portion	
Clean equipment with air hose air (or equivalent)	
Lab Practices * Cleanlinese	
** Pouring or Pinching a s	small amount of seed from the bulk or pans to achieve correct
Sample ca	ic failure of this portion (i.e., a score of Zero out of five).
	e fullure of this portion (i.e., a score of Zero out of five).
* Lab Pra followed (
maintaining clean equipment and surfaces and or allowing part of the sample to go unaccounted ie spilling part of sample, allow some of the sample to remain in sample	
container, etc).	
** Pouring or Pinching a small amount of seed from the bulk or pans to achieve correct working weight is <u>automatic failure</u> of this portion (i.e., a score of Zero out of five).	

Clean Blower with air hose	(or equivalent) before use	
Set anemometer to proper se	etting (m/s)	
	ne EAV measured with the anemometer one full turn below blowing point and nt to account for gate lag.	
Check sample for large obje	cts and if any remove them	
Place entire working sample	into heavy portion cup	
Run blower for 3 minutes		
Empty entire contents of the container	heavy portion cup into appropriate	
Check screen and tube for a with gate wide open.	ny residual sample material/run blower	

Uniform Blowing Procedure

* Lab Practices refers to proper over all work practice: Were standard lab practices followed (everything done cleanly and entire sample accounted for) or not (not maintaining clean equipment and surfaces and or allowing part of the sample to go unaccounted e.g., spilling part of sample, allow some of the sample to remain in sample container, etc...).

* Lab Practices refers to p followed (everything done maintaining clean equipme

Clean Blower with air ho

Lab Practices 3

Lab Practices 1

Cleanliness

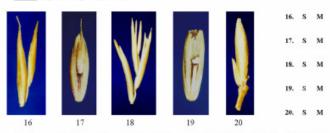
unaccounted e.g., spilling part or sample, allow some of the sample to remain in sample container, etc...).

PSU and MSU classification

You are conducting a purity analysis on a sample of red fescue. The state into which the seed will be shipped does not consider any of the contaminating species given below as noxious.

a. You are to classify the following 15 items. Based on the information provided below from Volume 3, Uniform Classification of Weed and Crop Seeds and your knowledge of AOSA Rules Volume 1 related to purify analyses, you are to classify sent item as one of the following: pure seed (P), inert matter (I), other crop seed (C), or weed seed (W). Circle your arraner.

NOREN /	CONTROL SCIENTIFIC NAME	COMMON NAME	FAMILY	SPP. CLASS	Γ	CONTAMINATING CLASSIFICATION							
210000					Α	F	н	R	s	т	٧		
2017	Agrostie capillaris L.	bentgrass, colonial	Poscese	T	C	С	С	С	С	С	С		
316592	Brassica rapa L. var. rapa	rape, annual tumip; rape, biennial tumip; rape, bird; tumip	Brassicaceae	A, V	С	W	w	W	W	W	С		
7320	Bromus hordeaceus L.	brome, blando chess, soft	Pozceae	R	w	w	w	С	w	w	v		
300215	Festivos rubre L. subsp. rubre	fescue, creeping red; fescue, red	Poscese	Т	С	С	С	С	С	С	С		
22494	Lolium perenne L.	ryegrass, perennial	Poaceae	AT	C	С	С	C	C	С	С		
23613	Medicago sipulina L.	medic, black	Fabaceze	A	С	W	W	С	W	С	С		
28920	Ptva bulticase1	bluegrass, bulbous	Poaceae	A	W	W	W	W	W	W	٧		
28996	Poa pratensis L.	bluegrass, Kentucky	Poaceae	T	C	С	С	С	С	С	С		
40219	Trifolium datilum Sibith.	clover, small hop; clover, suckling; shamrock, Irish	Fabaceae	AF	w	U	w	w	w	w	v		



b. The following five items were taken from the pure seed portion of the working sample and each contains a caryopsis. Classify each item as either a single seed unit (S) or a multiple seed unit (M). Circle your answer. (5 points - 1 point per item)

c. You have completed your purity separation and the component weights are given below. Based on the information provided, calculate the percentages of pure seed, other crop seeds, inert matter and weed seeds. Please show your work. (5 points)

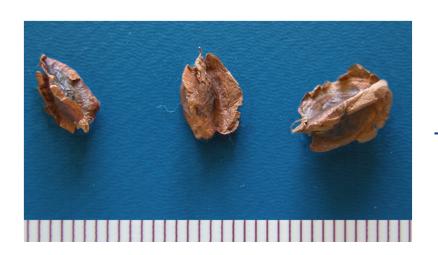
Purity Practical Seed ID

SEED IDENTIFICATION LIST - Sort by Scientific Name

Family	Scientific Name	Common Names				
Malvaceae	Abelmoschus esculentus	okra				
Pinaceae	Abies concolor	white fir				
Malvaceae	Abutilon theophrasti	butterprint, velvetleaf				
Euphorbiaceae	Acalypha virginica	three-seeded mercury				
Sapindaceae	Acer rubrum	red maple				
Asteraceae	Achillea millefolium	common yarrow, woolly yarrow				
Poaceae	Achnatherum hymenoides	Indian ricegrass				
Poaceae	Aegilops cylindrica	jointed goatgrass				
Fabaceae	Aeschynomene indica	ding ding, curly indigo, Indian jointvetch, northern jointvetch, sensitive jointvetch				
Poaceae	Agropyron desertorum	standard crested wheatgrass				
Caryophyllaceae	Agrostemma githago	corncockle				
Poaceae	Agrostis capillaris	colonial bentgrass				
Amaryllidaceae	Allium cepa	onion				
Amaryllidaceae	Allium porrum	leek				
Amaryllidaceae	Allium schoenoprasum	chives				
Amaryllidaceae	Allium vineale	wild garlic				
Poaceae	Alopecurus geniculatus	water foxtail				
Poaceae	Alopecurus pratensis	meadow foxtail				
Amaranthaceae	Amaranthus albus	tumble pigweed				
Asteraceae	Ambrosia artemisiifolia	common ragweed				
Asteraceae	Ambrosia trifida	giant ragweed				
Boraginaceae	Amsinckia tessellata	western fiddleneck				
Poaceae	Andropogon gerardi	big bluestem				
Apiaceae	Anethum graveolens	dill				
Asteraceae	Anthemis arvensis	field chamomile				

Seed ID Scoring

2 points for correct species name (genus and specific epithet) or correct complete common name


1 point for correct genus

0.5 point for correct Family name

Seed ID

Points

0.5

Polygonaceae

Seed ID

Points

1

Rheum

Seed ID

Points

2

Rheum x rhabarbarum

Seed ID

Points

2

Rhubarb

Seed ID

Points

0

"Medicago" plus "lupulina" is Black medic "Medicago" plus "sativa" is Alfalfa

They may be closely related, but they are two different species.

Some may say, but I got the genus correct!

To know someone's thought process is impossible.

What if someone sees a Black medic seed and writes down "Medicago sativa"?

Was it because they thought it was Medicago sativa

or did they just mix up the specific epithet?

What if someone sees a Black medic seed and think it's a Yellow sweetclover and writes down "Medicago officinalis" because they were thinking "Medicago officinalis" is the correct species name for Yellow sweetclover (Melilotus officinalis)?

If you are unsure of the species name; it's better to answer with the genus name instead.

Separations

A candidate will be provided FIVE "mixtures" with 25 seeds each.

Select any **TWO** mixtures; separate, identify and give the number of each species found.

Use common or scientific names.

Separations Scoring

1 point for correct species name (genus and specific epithet) or correct complete common name x number of seeds

0.5 point for correct genus x number of seeds

Separations

<u>Separation</u>		<u>Separation answers</u>						<u>Poin</u>	<u>ts</u>
<u>Kind</u>	<u>Number</u>	<u>Kind</u>	No.	<u>Found</u>					
Alsike clover/Trifolium hybridum	6	Alsike clover		6	1	х	[6]	=	6
Alfalfa/Medicago sativa	5	Alfalfa		8	1	х	[5]	=	5
Black medic/Medicago lupulina	4	Medicago indicus		3	0	X	[0]	=	0
Subclover/Trifolium subterraneum	4	Trifolium		3	0.5	X	[3]	=	1.5
Birdsfoot trefoil/Lotus corniculatus	4	Birdsfoot trefoil		4	1	х	[4]	=	4
Yellow sweetclover/Medicago officinalis	2								
	Total 25		Total	24			Tot	al	16.5

elow with your findings and calculat each sample has been carefully prepa ontents of each sample are known a	tion) Candid y analysis on one of the three samples pro- te the percentage by weight of each purity- tered and weighted by the examination com- nd your findings will be compared to the ei- s will result in loss of points. Total points a	component. <i>Note</i> : nmittee; therefore, the expected findings. Loss	Purity Sample
Pure Seed	EIGHT Pure Seed	96	,
Other Crop Seed	Other Crop Seed		You will have three species to choose fro
Inert Matter	Inert Matter		Tou will have timee species to choose no
Weed Seed	Weed Seed		
Total	Total		to conduct a purity analysis.
Number Common or scientific n	iame		
Number Common or scientific n	name	ate noxious v	weed seeds found in the purity analysis by common name or scientific
name			

Total Score_

Purity Sample Scoring

Points are awarded for doing things correctly

(unless you don't maintain sample integrity- then minus 1 point)

Seed ID
Separations
Purity Sample

All rely on proper taxonomic seed identification

Purity Practical 205 Points

Seed ID 100 points

Separations 50 points

Purity Sample 20 points

170 points

or 82.93% of Purity Practical

164 points or 80% is needed to passed

Purity Practical 205 Points

Seed ID 100 points

Separations 50 points

Purity Sample 20 points

If you get the full points for M&D, UBP, and PSU and MSU classifications (35 points), you'd would need to score 75.88% (129 points) on the Seed ID, Separations, and Purity Analysis to pass the Purity Practical.

Purity Practical 205 Points

A good metric to measure your readiness to take the Purity Practical exam is; Can you score 80% or higher by identifying randomly selected seeds from the Seed Identification List?

Germination Exam

- Written
 - 160 points
 - 150 written content
 - 10 PSU
 - 70% required
 - 112 points

- Practical
 - 100 points
 - 90 seedling evaluation
 - -10 TZ
 - 80% required
 - 80 points

80% average needed overall

- Written-70% (112p), practical-90% (90p)
- Written-80% (128p), practical-80% (80p)

Purity Exam

Written

- 155 points
 - 130 written content
 - 25 Scientific name
- 70% required
 - 109 points

Practical

- 205 points
 - Mix and Divide, UBP 15
 - Seed ID 100
 - Separations 50
 - Purity 20
 - PSU/MSU 20
- 80% required
 - 164 points

80% average needed overall

- Written-70% (109p), practical-90% (185p)
 - This would require 150/170 on seed ID, purity and separations, if M&D, UBP, and PSU/MSU points were 100%
- Written-80% (124p), practical-80% (164p)
 - This would require 129/170 on seed ID, purity and separations, if M&D, UBP, and PSU/MSU points were 100%

¿Questions?